On Bayesian principal component analysis
نویسندگان
چکیده
A complete Bayesian framework for Principal Component Analysis (PCA) is proposed in this paper. Previous model-based approaches to PCA were usually based on a factor analysis model with isotropic Gaussian noise. This model does not impose orthogonality constraints, contrary to PCA. In this paper, we propose a new model with orthogonality restrictions, and develop its approximate Bayesian solution using the variational approximation and results from directional statistics. The Bayesian solution provides two notable results in relation to PCA. The first are uncertainty bounds on principal components (PCs), and the second is an explicit distribution on the number of relevant PCs. The posterior distribution for the PCs is found to be of the von-Mises-Fisher type. This distribution—and its associated hypergeometric function, 0F1—is studied. Numerical reductions are revealed, leading to a stable and efficient Orthogonal Variational PCA (OVPCA) algorithm. OVPCA provides the inferences sought above. Its performance is illustrated in simulation, and for a sequence of medical scintigraphic images.
منابع مشابه
Learning Bayesian Network Structure Using Genetic Algorithm with Consideration of the Node Ordering via Principal Component Analysis
‎The most challenging task in dealing with Bayesian networks is learning their structure‎. ‎Two classical approaches are often used for learning Bayesian network structure;‎ ‎Constraint-Based method and Score-and-Search-Based one‎. ‎But neither the first nor the second one are completely satisfactory‎. ‎Therefore the heuristic search such as Genetic Alg...
متن کاملغربالگری خودکار افراد خطاکار با تحلیل تفکیکپذیری مشخصات سیگنالهای هدایت الکتریکی پوست و حجمسنجی نوری
Credibility assessment screening by a small system and receiving optimum result in minimum time is a basic need in critical gates. Therefore the aim of this research is automatic detection of stress in guilty persons through skin conductance response and photoplethysmograph signals which are convenient and ease-of-use sensors .In this paper, a set of database with interview protocol (including ...
متن کاملSparse Structured Principal Component Analysis and Model Learning for Classification and Quality Detection of Rice Grains
In scientific and commercial fields associated with modern agriculture, the categorization of different rice types and determination of its quality is very important. Various image processing algorithms are applied in recent years to detect different agricultural products. The problem of rice classification and quality detection in this paper is presented based on model learning concepts includ...
متن کاملFeature reduction of hyperspectral images: Discriminant analysis and the first principal component
When the number of training samples is limited, feature reduction plays an important role in classification of hyperspectral images. In this paper, we propose a supervised feature extraction method based on discriminant analysis (DA) which uses the first principal component (PC1) to weight the scatter matrices. The proposed method, called DA-PC1, copes with the small sample size problem and has...
متن کاملVariational Bayesian Independent Component Analysis
Blind separation of signals through the info-max algorithm may be viewed as maximum likelihood learning in a latent variable model. In this paper we present an alternative approach to maximum likelihood learning in these models, namely Bayesian inference. It has already been shown how Bayesian inference can be applied to determine latent dimensionality in principal component analysis models (Bi...
متن کاملAn application of principal component analysis and logistic regression to facilitate production scheduling decision support system: an automotive industry case
Production planning and control (PPC) systems have to deal with rising complexity and dynamics. The complexity of planning tasks is due to some existing multiple variables and dynamic factors derived from uncertainties surrounding the PPC. Although literatures on exact scheduling algorithms, simulation approaches, and heuristic methods are extensive in production planning, they seem to be ineff...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Computational Statistics & Data Analysis
دوره 51 شماره
صفحات -
تاریخ انتشار 2007